
Final Report

Designing Emulated Distributed File System for exploration of Outbreaks:

COVID-19, Ebola, and SARS

Team Members: Tushar Sharma, Laxmi Garde, Raajitha Rajkumar

A. Project Overview

The project provides a study and analysis of impacts of COVID-19, SARS and Ebola

outbreaks. The study examines the available datasets and provides relationships

between the deaths, geography, recovered cases, and total infected people due to

different diseases. The project is based on an emulated distributed file system

implemented using Firebase and MySQL, and uses the file system operations

implemented and provides these features to the end users.

B. Project Design / Emulated Partition Systems Implementations

The implementation of all operations mentioned in Task 1, Task 2 and Task 3 of the

Project have been completed successfully. Details on the Project timelines are

mentioned in the Project Tracker (Section C). The implementation details include:

B.1 MySQL Implementation

For our MySQL implementation, we are using two tables created with the following

structure:

fid name parent parentid content file

1 root 0 /

pid fid tableName partitionName part

… … … … …

Page 1

● mkdir()

Creating a new directory is very simple as we just insert a new row into the directory

table after gathering all the column information. After parsing through user input and

tracking parent information and determining content information, we just insert it.

● ls()

We are able to grab the children files from a directory by simply tracking the parentid

grabbed from the file id where the user put in the directory name.

● rm()

For rm() we use a simple delete statement to delete the row from the dir table

● put()

1. Take filename and create a tableName for new table

2. Create a new row in dir table with filename and tableName

3. Create a new table for file contents (.csv, .txt) and assign partition number

4. Insert values into table

5. For each partition, create a new table and insert a new partition location in the

partition table

Page 2

Results of put():

● cat()

For cat(), we use a simple select statement to output the table

● getPartitionLocations()

To get the location of the partitions in the EDFS, we simple map to their IDs in their table

● readPartitions()

To read a partition, we map to the partition table created in put, and map to the part

specified by the user

B.2 Firebase Implementation

For our Firebase implementation, we are using 3 cards:

1. Dir -> Directory tree , stores children of a node and its content structure

Page 3

2. Files -> Metadata tree stores the files and their partition names

3. Store -> Location where the partitioned file contents are stored

Page 4

The above 3 cards and their structure is essential for the following commands to run

properly.

● mkdir()

Creating a new directory involves first querying the Database for a pre-existing directory.

If the directory is new and does not exist, the function proceeds to create the whole

directory tree, including and new components.

For eg : /user/umbrella/mercer as an input would create all directories including user,

umbrella even if they did not exist. (placeholder acts as an identity file allowing firebase

to actually create directory structure. This cannot be done if the card does not have any

content)

Page 5

Result of mkdir

● ls()

Using the directory structure we first need to modify the input to match our directory

structure with ‘/children/’ for each directory giving access to its children.

Once done we can list the contents of any directory.

For empty directories we display a message stating the current directory has no children.

● rm()

For rm we have to do a 3 pronged approach and delete the file from 3 places:

a. Dir structure from content list of the path card

b. Files structure to remove the partitions

c. Stores structure to remove the actual partitions

Page 6

● put()

Put is one of the more complex implementations, it has the following steps:

1. Split file into given number of partitions:

2. Insert file into the Dir Structure:

Page 7

3. Insert file partition names into the Files Structure:

4. Insert data into store with partitions:

Directory Structure after put request

Page 8

Files Structure after put request

Store Structure after put request

● getPartitionLocations()

We simply access the two Cards Files and Store to get the Partition Locations.

Page 9

● readPartitions()

For reading a numbered partition of the given file, we first ensure that the file exists.

Then we use the generated getPartitionLocations() to fetch data from the location.

● cat()

Cat uses the existing function of getPartitionLocations and readPartitions to reconstruct

the complete file and return it.

Page 10

B.3 Application User Interface Implementation

For the application’s user interface, we used Python3, HTML5/CSS3, Javascript, JQuery,

Bootstrap libraries, Axios, and the application uses the Flask web framework as a local

development server.

The file structure for the project follows the same structure as specified in the Flask

documentation. The Flask web application project structure is as follows:

Flask Project Structure

Page 11

The static folder contains the static items that are served by the server. The firebase.js

and mysql.js files contain the Javascript, JQuery implementations that render and update

the HTML based on the API responses. The styles.css provides the CSS styling template

for the project. The templates folder contains index.html, firebase.html, mysql.html, and

explanation.html code for front-end. The app.py file creates the Flask application

instance as it imports the Flask objects and registers all the front-end paths. The

firebase_api.py and mysql_api.py files are the backend code of the application, and they

have the REST APIs for each feature implementation.

To start the Flask application instance the following commands are required to be

executed on the command line:

The application can be accessed on URL : http://127.0.0.0.1:5432

The URL takes the users to the Project Home page which contains two buttons, which

allows users to click on the specific EDFS implementation.

The Home page also contains a ‘About Operations’ button which redirects the user to

the explanation page. The explanation page gives the list of features provided by the

application.

Project Home Page Explanation Page

Page 12

By clicking on the Firebase or MySQL button on the Project Home page, the user can go

to one of the implementations.

Firebase Operations Page MySQL Operations Page

● mkdir()

mkdir on the front-end is given by the ‘New Folder’ button and by clicking on it, an input

field appears where the path of the new directory to be created is specified. After that

by clicking on the ‘Create’ button, the directory is created. The button click internally

calls the Firebase (or MySQL) /mkdir REST API which takes ‘path’ as a parameter,

backend processes the request and the API response in JSON format is parsed and

rendered on the interface.

Mkdir directory path entry Directory created successfully

Page 13

● ls()

The ls command can be executed by checking in the File explorer section, by entering

the file system path for which the user wants to check the contents for. By clicking on the

search icon, the contents of the file are displayed in the section below. If the directory is

present, ‘This directory is empty’ message is displayed.

Empty Directory Directory contents displayed

● rm()

The rm command can be executed using the ‘Delete’ button in the FIle Explorer section

of the interface. The parameter the /rm API accepts is the filepath. By clicking on the

Delete button, if the delete file operation is successful, the alert box is displayed. After

deleting the file, check if the file is deleted by using the ls command.

File deleted successfully Verifying by using ls command

Page 14

● put()

The put command can be used by the user by clicking on the ‘Upload’ button. The

number of partitions, file path, and selecting a file from the local system to post the

contents is performed by clicking on Upload. Once the upload is successful, alert

message is displayed.

Upload file from local Upload done successfully

Uploaded file checked using ls command

Page 15

● cat()

cat command can be executed by the user by clicking on the ‘Open’ button present. The

output of the cat command is displayed in the ‘FILE CONTENT’ tab below.

cat command output

● getPartitionLocations() and readPartition()

The output for these two commands can be viewed by the user in the ‘Information’ tab.

To view the contents of a particular partition, enter the partition number and click on

the search icon. The contents of the partition would be displayed below in tabular

format.

getPartitionLocation() output readPartition() output

The search and analysis interface implementation details are present in section C. Both

MySQL and Firebase pages have ‘?’ symbols on top for users to access the Explanation

Page.

Page 16

B.4 Project Integration APIs

BASE_URL= http://127.0.0.1:5432/

Function Endpoint Met
hod

Query
Paramete
r

Sample Request URL Sample JSON
Responses

MySQL mkdir /mysql/mkdir GET path BASE_URL +
mysql/mkdir?path=/demo

{ "status": "Directory created
successfully!" }

Firebase mkdir /firebase/mkdir BASE_URL +
firebase/mkdir?path=/demo

MySQL ls /mysql/ls GET path BASE_URL +
mysql/ls?path=/covid

{ "directories": [],
"files":["covid_19_clean_comp
lete.csv"] }

Firebase ls /firebase/ls BASE_URL +
firebase/ls?path=/covid

MySQL cat /mysql/cat
GET file

BASE_URL +
mysql/cat?file=/user/test/sars.c
sv

[
"{\"Country\":\"Australia\",\"
Cumulative male
cases\":4,\"Cumulative female
cases\":2,\"Cumulative total
cases\":6,\"No. of
deaths\":0,\"Case fatalities
ratio (%)\":0,\"Date onset first
probable
case\":\"2\\/26\\/2003\",\",\
"Median age\":15.0,\"Age
range\":\"Jan-45\",\"Number
of Imported cases\":6.0}"
]

Firebase cat /firebase/cat BASE_URL +
firebase/cat?file=/user/test/sars
.csv

MySQL rm /mysql/rm
GET file

BASE_URL +
mysql/rm?file=/user/test/sars.c
sv

{"status": "OK"}

Firebase rm /firebase/rm BASE_URL +
firebase/rm?file=/user/test/sars
.csv

MySQL put /mysql/put POST file, dirPath,
numPart

BASE_URL +
mysql/put?dirPath=/user/test&
numPart=2
Body: file: sars.csv

{"status": "OK"}

Firebase put /firebase/put BASE_URL +
firebase/put?dirPath=/user/test
&numPart=2

Page 17

Body: file: sars.csv

MySQL
getPartitionLo
cations

/mysql/getPartition
Locations GET file

BASE_URL +
mysql/getPartitionLocations?file
=/user/test/ebola.csv

{
"ebola_1":

"Store/user/test/ebola_1",
"ebola_2":

"Store/user/test/ebola_2"
}Firebase

getPartitionLo
cations

/firebase/getPartiti
onLocations

BASE_URL +
firebase/getPartitionLocations?f
ile=/user/test/ebola.csv

MySQL
readPartition

/mysql/readPartitio
n GET file,

partNumber

BASE_URL +
mysql/readPartition?file=/user/
test/ebola.csv&partNumber=2

[
“{\"Country\":\"Italy\",\"Date
\":\"6\\/22\\/2015\",\"Cumul
ative total cases\":1.0,\"No. of
deaths\":0}”]Firebase

readPartition
/firebase/readParti
tion

BASE_URL +
firebase/readPartition?file=/use
r/test/ebola.csv&partNumber=2

MySQL search
function 1

/mysql/countrydea
thcount GET dataset,

country

BASE_URL +
mysql/countrydeathcount?data
set=covid&country=India

{"mapper": ["{}",
"{\"Country\":{\"0\":\"India\"
},\"No. of
deaths\":{\"0\":33408},\"Cum
ulative total
cases\":{\"0\":1480073}}",
"{}", "{}"], "reducer":
"{\"Country\":{\"0\":\"India\"
},\"No. of
deaths\":{\"0\":33408},\"Cum
ulative total
cases\":{\"0\":1480073}}"}

Firebase
search
function 1

/firebase/countryd
eathcount

BASE_URL +
firebase/countrydeathcount?da
taset=covid&country=India

MySQL search
function 2

/mysql/findcountri
esbetween

GET dataset,
limit1,
limit2

BASE_URL +
mysql/findcountriesbetween?d
ataset=covid&limit1=1000&limi
t2=5000

Outputs too large.

Firebase
search
function 2

/firebase/findcount
riesbetween

BASE_URL +
firebase/findcountriesbetween?
dataset=covid&limit1=1000&lim
it2=5000

MySQL
analysis
functions

/mysql/analysisdea
thpercountry

/mysql/analysisrec
overy

GET - BASE_URL +
/mysql/analysisdeathpercountry

BASE_URL +
mysql/analysisrecovery

Outputs too large.

Firebase
analysis
functions

/firebase/analysisd
eathpercountry

/firebase/analysisr
ecovery

BASE_URL +
firebase/analysisdeathpercount
ry
BASE_URL +
firebase/analysisrecovery

Page 18

C. Search and Analytics Functions

Search Functions:

1. Death count for a specific disease (of 3) for a specific country.

2. Find countries with a death count between two numbers for a specific

disease.

Analytics Functions:

1. Analyze the count of deaths per country for each disease

2. Analyze the number of people who recovered after being affected by the

disease for each disease.

C1. MySQL Implementation

For the MySQL implementation for partition-based map and reduce on data stored in

our EFDS, we performed our following search and analytic functions on our dataset

partitions and combined the results.

Above is my flow of how I coded the search and analytic functions for MySQL. As you

can see, I go through all the tables in my database to get to my final answer.

Search Functions:

1. parameters(disease, country)

Page 19

For example, if a user puts in the country “Canada” and the disease “sars” then

we can look through the sars partition ids, query all the death counts from canada

and combine them easily in python.

You can see in the example above, there are 5 partitions and 5 death counts

mapped and reduced to a total death count.

2. parameters(disease, upper/lower thresholds)

Following the same workflow, you can see that there is only 1 partition for covid,

and for all the sums of deaths per country, it gets filtered between the upper and

lower limits decided by the user. The example here uses covid with limits of 2000

and 5000.

Page 20

Analytics Functions:

1. In order to find the total deaths per country across all datasets, we found the

total deaths per country for each dataset, and combined all three results of each

dataset. Here is an example of a SQL query we used…
"SELECT CountryRegion, SUM(Deaths)

FROM partition

GROUP BY CountryRegion"

2. In order to find the average number of people recovered from all datasets, we

query all partitions in such a way…
"SELECT AVG(Confirmed), AVG(Recovered)

FROM partition”

We used the average number of confirmed cases as a way to analyze the data. We

take all the averages and combine them to make a total average across all

datasets to get an output like this:

C2. Firebase Implementation

The general implementation involves creating a mapper and a reducer function for each

specific search and analysis function.

The workflow needs to emulate a hadoop implementation and as such needs to run

mappers asynchronously. For this I opted for the multiprocessing library of python and

its associated thread pools to run multiple jobs asynchronously for different partitions.

Page 21

The general solution is represented in the flowchart above. The sample workflow for the

specific queries is described below.

1. Death counts for specific diseases for a specified country:

a. First we ask the user to select a Dataset for which they want to search the

death count.

b. Next we ask the user to enter the name of a country to look for deaths for

that specific country.

c. The following steps are taken to search for the result:

i. We run parallel processes for mapping (1 for each partition the file

is divided into) which does a select filter over the partitioned data

to find the country mentioned in the search input.

Page 22

ii. After this the results of all the mappers are collected in a list and

sent as input to the reducer, which then further searches for the

results in the mapper results.

2. Find countries with a death count between two numbers for a specific disease.

a. For this search query the user enters lower and upper limits for death

count for a specific dataset.

b. The mapper then runs through all the partitions searching for countries

that match the condition. The result for the mappers is then collected by

the reducer and returned to the API call.

3. Analyze the count of deaths per country for each disease

a. The analysis questions are posed to repeat the action for all 3 disease

datasets - Sars, Covid, and Ebola.

b. First the mapper runs through the partitions and collects the number of

deaths in the current partition for each country.

c. Then the reducer sums over the mapper results to produce the total

number of deaths per country for the dataset.

4. Analyze the number of people who recovered after being affected by the disease

for each disease.

a. The analysis questions are posed to repeat the action for all 3 disease

datasets - Sars, Covid, and Ebola.

b. First the mapper runs through the partitions and finds the number of

people who survived the disease.

c. Then we collect the total number of countries present in our partition, we

return these three values to our mapper to combine and return the

average number of people who recovered from the specific disease.

d. Then the reducer sums over the mapper results to produce the total

number of people recovered for the diseases, it then sums over the total

country count to calculate and return the average number of people who

Page 23

recovered from the disease.

C3. Application User Interface Implementation

1. Search Functions:

The search functions are present in the Search section of the user interface. The two

functions described above in Section C1 and Section C2 are displayed using the

accordion HTML component. The output of the search function is displayed in the

‘RESULT’ section.

Search Section

● Finding Death counts for specific disease for a user specified country

The user can select the country and disease for checking the death counts of that

country. By clicking on the ‘Submit’ button the user can see the number of deaths for

that country.

Page 24

Search death count of the country

● Finding countries with a death count between two numbers for a specific

disease.

This function takes in three parameters, disease, limit1 and limit2. By clicking on

the ‘Submit’ button, the countries that have the number of disease cases

between limit1 and limit2 are displayed.

Search countries in the user specified range

2. Analysis Functions:

The analysis functions are present in the Analysis section of the user interface. The two

functions described for analysis in Sections C1 and C2 are displayed using block buttons.

The output of the analysis functions is displayed in the ‘RESULT’ section.

Page 25

Analysis Section

● Analysis of the death count per country for each disease

To view the analysis of death count per country, the user can click on the ‘Total Deaths

per Country’ button. The result of the analysis (as explained in Sections C1 and C2) is

displayed in the ‘RESULT’ section.

Number of Deaths per Country output

● Analysis on the number of people who recovered after being affected by the

disease

The user can click on the ‘Average Number of Recovered Cases’ button to view the

analysis of the number of people who recovered after being affected by the disease. The

result of the analysis is displayed in the ‘RESULT’ section of the interface.

Page 26

Number of recovered cases

D. Project Tracker:

Date Task
Description

Responsibilities Status

9/19 Proposal Group Meeting on zoom to write out proposal DONE

9/19 -
10/3

Research Tushar: Individual research on Firebase
Laxmi: Individual research on web apps
Raajitha: Individual research on MYSQL

** Research will include: storing datasets, how we want to
use commands, functions to use, user-flow, interface
languages, database formatting, contents display, and

storing**

DONE

10/3 -
10/17

Task-1
Implementati

on

Tushar: implement commands from task one on firebase
Laxmi: set up web browser app and create

structures/interface for potential user
Raajitha: implement commands from task one on MYSQL
**Actually start coding and setting up the commands with

their executions. We can use this time to communicate
with each other, ask questions and make changes**

DONE

10/17-
10/31

Task 1
Completion,

Task 2
Implementati

Tushar: Complete firebase implementation
Laxmi: Start connecting interface with databases

Raajitha: Complete MYSQL implementation
** will start to add updates to report **

DONE

Page 27

on, Midterm
Report

10/31 Midterm
Report

Group meeting to finalize and submit midterm report DONE

10/31 -
11/14

Task 2
Completion,

Task 3
Implementati

on

Work on PMR operations together DONE

11/14 -
11/28

Complete
Task 3 &

Integration.
Final Report

Tushar: Test and finalize task 2
Laxmi: Test and finalize task 3 & Integration

Raajitha: Test and finalize task 2

DONE

11/28 Final Report Group meeting to finalize report and presentation video DONE

11/28 -
12/1

Work on Peer
Evaluations

** individually work on peer evaluations ** -

12/2 Peer
Evaluations

Submit evaluations -

E. Changes to previous project work

1. MySQL:

we changed the put() function to allow lots of data to be loaded fast. I was

manually inserting the lines before, but now we just use the “LOAD LOCAL INFILE”

to load the csv file extremely quickly because before that, the long datasets were

not loading at all.

2. Firebase:

- One of the major changes needed was to introduce children and content in

the directory system. This was needed to handle multiple subdirectories

and files easily in the EDFS. We further split the location of partitions and

Page 28

the actual partitions themselves into separate cards. This prevents errors

due to path matches and gives a clean and extendable implementation.

- As expected implementation of map reduce emulation required the help of

the multiprocessing library in python which essentially allowed the

mappers to run in parallel and emulate the working of a distributed file

system.

3. Application User Interface

The Tree view presented and statically generated during the Midterm is changed on the

user interface due to challenges faced during dynamic updates and integration to update

and render the Treeview file system successfully. The new approach provides users with

intuitive

F. Challenges, Learnings & Future Work:

1. MySQL:

- AWS RDS Instance connection: This took a lot of time for me to figure out in

terms of connecting it to python and forming a proper database using python and

MySQL because I do not have windows. I learned a lot with how AWS works and

how I can build projects in the future.

- Loading CSV File: I had to dabble a lot with the MySQL permissions in order to

allow a whole csv file to be loaded into a table. I learned a lot about how you can

bulk load csv files easily into MySQL tables instead of inserting each line.

- Search & Analytics: These functions were hard to do because some datasets had

different data like cumulative columns versus regular columns. I had to do

different functions for different datasets. This helped me learn a lot about

aggregate functions and how to query on python and MySQL as well as concat

multiple tables.

2. Firebase:

- One of the biggest challenges was to get the directory substructure right.

- Next big challenge was to get all the urls of the firebase system right to

ensure the 3 big cards (Dir,Files and Store) are handled correctly

Page 29

- Thinking about the edge cases for put() function was especially

challenging, and it resulted in a big multi-step function.

- The analytics were challenging to process due to the nature of distributed

data and cumulative functions, some stats like averages also required me

to collect the count of inputs distributed over the dataset partitions.

Creating a standardized structure for these distributed requests was a

great learning experience.

3. Application User Interface:

- The initial design of the user interface of considering the EDFS commands and

putting it into an intuitive user interface for the users was a bit challenging.

- As we were new to the Flask web framework and related development, it was a

new learning curve for us as a team. We all are relatively new to front-end

technologies, and building user interfaces, the initial development phase was a

bit challenging for us.

- Javascript, JQuery implementations, handling Axios and rendering the correct

response on the front-end, integration and testing were challenging.

- Future work is to host this application on a web application server i.e. on

platforms like Heroku, PythonAnywhere, GCP. Improving the performance of the

interface, new errors/exception handling, and making the application more

intuitive and user friendly.

The project work had a good learning curve, and gave us an opportunity to work

together as a team.

G. Useful Links and Resources

Demo Video Link:

https://www.youtube.com/watch?v=bPm5M0QuKhg&feature=youtu.be

Project Code Google Drive Link:

https://drive.google.com/drive/u/0/folders/1M1kANNc5BqycbigY_GKEqcThQ6RSp-z5

Page 30

https://www.youtube.com/watch?v=bPm5M0QuKhg&feature=youtu.be
https://drive.google.com/drive/u/0/folders/1M1kANNc5BqycbigY_GKEqcThQ6RSp-z5

GitHub Code Link:

https://github.com/laxmigarde/dsci551-project

https://github.com/laxmigarde/dsci551-project/tree/integration-frontend

Resources and materials referred:

1. Flask Documentation: https://flask.palletsprojects.com/en/2.2.x/

2. Bootstrap

Documentation:https://getbootstrap.com/docs/5.0/getting-started/introduction/

3. JQuery: https://www.w3schools.com/jquery/default.asp

4. Axios: https://axios-http.com/docs/intro

5. Javascript MDN: https://developer.mozilla.org/en-US/docs/Web/JavaScript

6. Font Awesome: https://fontawesome.com/

7. MySQL APIs: https://webdamn.com/create-restful-api-using-python-mysql/

8. Python web application using Flask:

https://www.digitalocean.com/community/tutorials/how-to-create-your-first-we

b-application-using-flask-and-python-3

Page 31

https://github.com/laxmigarde/dsci551-project
https://github.com/laxmigarde/dsci551-project/tree/integration-frontend
https://flask.palletsprojects.com/en/2.2.x/
https://getbootstrap.com/docs/5.0/getting-started/introduction/
https://www.w3schools.com/jquery/default.asp
https://axios-http.com/docs/intro
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://fontawesome.com/
https://webdamn.com/create-restful-api-using-python-mysql/
https://www.digitalocean.com/community/tutorials/how-to-create-your-first-web-application-using-flask-and-python-3
https://www.digitalocean.com/community/tutorials/how-to-create-your-first-web-application-using-flask-and-python-3

