Final Report

Designing Emulated Distributed File System for exploration of Outbreaks:
COVID-19, Ebola, and SARS

Team Members: Tushar Sharma, Laxmi Garde, Raajitha Rajkumar

A. Project Overview

The project provides a study and analysis of impacts of COVID-19, SARS and Ebola
outbreaks. The study examines the available datasets and provides relationships
between the deaths, geography, recovered cases, and total infected people due to
different diseases. The project is based on an emulated distributed file system
implemented using Firebase and MySQL, and uses the file system operations
implemented and provides these features to the end users.

B. Project Design / Emulated Partition Systems Implementations

The implementation of all operations mentioned in Task 1, Task 2 and Task 3 of the
Project have been completed successfully. Details on the Project timelines are
mentioned in the Project Tracker (Section C). The implementation details include:

B.1 MySQL Implementation

For our MySQL implementation, we are using two tables created with the following
structure:

Page 1

fid name parent parentid content file
1 root 0 /
pid fid tableName partitionName part




o mkdir()
Creating a new directory is very simple as we just insert a new row into the directory

table after gathering all the column information. After parsing through user input and

tracking parent information and determining content information, we just insert it.

sql = "INSERT INTO dir (name, parent, parentid, content, file) VALUES (%s, %s, %s, %s, %s)"
val = (name, parent, int(parentid), content, file)
o Js()

We are able to grab the children files from a directory by simply tracking the parentid

grabbed from the file id where the user put in the directory name.

cursor.execute("SELECT fid FROM dir WHERE content LIKE '"+ dirname +"'")
result = cursor.fetchall()
dirid = result[0][0]

sgql = "SELECT name FROM dir WHERE parentid = " + str(dirid)

o rm()
For rm() we use a simple delete statement to delete the row from the dir table

sql = "DELETE FROM dir WHERE content LIKE '" + filename + "'";
o put()
1. Take filename and create a tableName for new table
2. Create a new row in dir table with filename and tableName
3. Create a new table for file contents (.csv, .txt) and assign partition number
4. Insert values into table
5. For each partition, create a new table and insert a new partition location in the

partition table

# create partition tables
sql = "SELECT fid FROM dir WHERE content LIKE '" + content + "'"
cursor.execute(sql)

fid = cursor.fetchall()

for x in range(k):

partitionName = tableName + " " + str(x)

cursor.execute("CREATE TABLE " + partitionName + " SELECT *|FROM " + tableName +" PARTITION(p" + str(x) +
sgl = "INSERT INTO partitions (file_id, tableName, partition name, part) VALUES (" + str(fid[-1][0])

+ ", '" + tableName + "','" + partitionName + "', " + str(x+l) + ")"

cursor.execute(sql)
db.commit ()

Page 2

my

)



Results of put():

: put("archive/day wise.csv", "/user", 3)

processing table into directory...

done
s |dir()
fid name parent parentid content file
0 1 root 0 /
1 2 user root 1 /user
2 4 day_wise.csv user 2 /user/day wise.csv day wise
: partitions()

pid file_id tableName partition_name part

0 1 4 day_wise day wise 0 1

1 2 4 day_wise day wise_1 2

2 3 4 day wise day wise 2 3
e cat()

For cat(), we use a simple select statement to output the table

e getPartitionLocations()
To get the location of the partitions in the EDFS, we simple map to their IDs in their table

e readPartitions()
To read a partition, we map to the partition table created in put, and map to the part
specified by the user
B.2 Firebase Implementation

For our Firebase implementation, we are using 3 cards:

1. Dir -> Directory tree, stores children of a node and its content structure

Page 3



v user

-

- content

e nn
d -

1: "sars.csv"

2. Files -> Metadata tree stores the files and their partition names

- Files

v user
v umbrella
v merce
- sars

9:"sars_1"
1: "sars_2"
2:"sars_3"
3. "sars_4"

» Store

3. Store -> Location where the partitioned file contents are stored

Page 4



"{\"Country\\/Region\":\"Australia\"\"Cumulative male cases

"{\"Country\\/Region\"\"New Zealand\"\"Cumulative male c

1

ars_2: "["{\"Country\\/Region\"\"Germany\"\"Cumulative male case:
3 |[\
4"

"{\"Country\\/Region\"\"South Africa\",\"Cumulative male c:

The above 3 cards and their structure is essential for the following commands to run
properly.

e mkdir()

Creating a new directory involves first querying the Database for a pre-existing directory.
If the directory is new and does not exist, the function proceeds to create the whole
directory tree, including and new components.

For eg : /user/umbrella/mercer as an input would create all directories including user,
umbrella even if they did not exist. (placeholder acts as an identity file allowing firebase
to actually create directory structure. This cannot be done if the card does not have any
content)

if(verify mkdir(url)):
req = requests.patch(url,data= json.dumps(placeholder))
if(req.status_code == 200):
print(req.json())

hildren/umbrella/children/jil1l/.json

ren’: Mone}
-default-rtdb.firebaseio.com/Dir/root/children/user/children/umbrella/children/jill/.json

Page 5



Result of mkdir

o Is()
Using the directory structure we first need to modify the input to match our directory
structure with ‘/children/’ for each directory giving access to its children.
Once done we can list the contents of any directory.
For empty directories we display a message stating the current directory has no children.

children/umbrella/children/jill/.json

ildren/user/children/umbrella/children/jill/.json

o rm()
For rm we have to do a 3 pronged approach and delete the file from 3 places:
a. Dir structure from content list of the path card
b. Files structure to remove the partitions
c. Stores structure to remove the actual partitions

Page 6



e put()
Put is one of the more complex implementations, it has the following steps:
1. Split file into given number of partitions:

print('TOTAL FILE SIZE ::'+str(len(data)))
part_size = (len(data)/numpart)
print/('PART SIZE::'+str(part_size))
files = []
for idx in range(numpart):

print(idx)

start = idx * part_size

stop = start + part_size
if idx == numpart-1:
stop = len(data)
print('START IDX ::'+ (start))
print('STOP IDX ::'+str(stop))
files.append(json.dumps(data[start : stop]))

2. Insert file into the Dir Structure:

insert file name in_dir(file,path:
path_parts = path_preprocess(path)
filename = file
data,url_update = fetch_files(path_parts,filename)
if 'content' in data.keys():
print('Content found in file')
if filename in data['content’]:

print("FILE ALREADY EXISTS!!™)
return
data['content'].append(filename)
else:
print('No content child found')
data['content'] = [filename]
patch(url _update,filename, data))

Page 7



3. Insert file partition names into the Files Structure:

insert_file_partition_names_in_meta(file_parts: sdirpath:str,filen
parts = []
for idx in range(len(file_parts)):
name = filename.split('.')[@]+'_"+str(idx+1)
parts.append(name])
files_parts_url = files_base_url+base_end

payload = ()
payload[dirpath] = parts
res = patch(files_parts_url,"test",data = payload)
if res != None:
return parts

4. Insert data into store with partitions:

store_parts(file_parts: sdirpath:str, filename:
=[]

dirpath = dirpath.replace('/', '_-_")

path = store_base_url +'/'+ base_end

for index,file in enumerate(file parts):

name = filename.split('.')[@]+'_"+str(index+1)
name = dirpath+'_-_'+name
data O
data[name] = file_parts[index]
= patch(path,dirpath, data=data)

"sars.csv’

Directory Structure after put request

Page 8



3 "sars_1"
1: "sars_2"
2: "sars_3"

3: "sars_4"

Files Structure after put request

_-_user_-_umbrella_-_mercer_-_sars_1: "["{\"Country\\/Region\":\'Au
_-_user_-_umbrella_-_mercer_-_sars_2: "[{\"Country\\/Region\":\"Ge
_-_user_-_umbrella_-_mercer_-_sars_3: "["{\"Country\\/Region\":\"Ne
_-_user_-_umbrella_-_mercer_-_sars_4:"['{\"Country\\/Region\":\"So

Store Structure after put request

e getPartitionLocations()
We simply access the two Cards Files and Store to get the Partition Locations.

getPartitionlocations(file : E
filename = file.split('/")[-1].split('.")[@]
dirPath = file.removesuffix('/'+filename+'.csv')

data = 1ls(dirPath)

locs = None
if "files"™ in data and filename+'.csv' in data['files']:

partsNames = getParts(filename,dirPath)
locs = generatelLocs(dirPath,partsNames)
return locs

Page 9



e readPartitions()

For reading a numbered partition of the given file, we first ensure that the file exists.
Then we use the generated getPartitionLocations() to fetch data from the location.

readPartition(file, partNumber):
= getPartitionLocations(file)
£ilanamn = €£iTa ~rnli+s! Y[ -1].split('.")[e@]
(variable) dirPath: Any i, filename+'.csv')
dirPath = dirPath.replace('/', '_-_")
path = store_base_url +'/'+dirPath +filename + '_' +
get_req = Pequests.get(pathﬂ
return get_req.json()

e o
Number

e cat()

Cat uses the existing function of getPartitionLocations and readPartitions to reconstruct
the complete file and return it.

Page 10



B.3 Application User Interface Implementation

For the application’s user interface, we used Python3, HTML5/CSS3, Javascript, JQuery,

Bootstrap libraries, Axios, and the application uses the Flask web framework as a local
development server.

The file structure for the project follows the same structure as specified in the Flask
documentation. The Flask web application project structure is as follows:

~ DSCI551-PROJECT

>

> .ipynb_checkpoints

archive
covid
ebola
sars
static
Js firebase.js
Js mysql.js
styles.css
~ templates
<> explanation.html
<> firebase.html
<> index.html
> mysqgl.html
uploads
.gitignore
app.py
covid.csv
ebola.csv

firebase_api.py
mysql_api.py
mysqgl-nb.ipynb
README.md
requirements.txt

sars.csv

sqgltable.csv

Flask Project Structure

Page 11



The static folder contains the static items that are served by the server. The firebase.js
and mysql.js files contain the Javascript, JQuery implementations that render and update
the HTML based on the API responses. The styles.css provides the CSS styling template
for the project. The templates folder contains index.html, firebase.html, mysgl.html, and
explanation.html code for front-end. The app.py file creates the Flask application
instance as it imports the Flask objects and registers all the front-end paths. The
firebase_api.py and mysql_api.py files are the backend code of the application, and they
have the REST APIs for each feature implementation.

To start the Flask application instance the following commands are required to be
executed on the command line:

dsci551-project git:(integration-frontend) x export FLASK_APP=app.py
dsci551-project git:(integration-frontend) x flask ——app app.py —debug run —port 5432

* Serving Flask app 'app.py

* Debug mode: on

WARNING: This is a development server. Do not use it in a production deployment. Use a production WSGI server instead.
* Running on http://127.0.0.1:5432

Press CTRL+C to quit

* Restarting with stat

The application can be accessed on URL : http://127.0.0.0.1:5432
The URL takes the users to the Project Home page which contains two buttons, which

allows users to click on the specific EDFS implementation.

The Home page also contains a ‘About Operations’ button which redirects the user to
the explanation page. The explanation page gives the list of features provided by the
application.

DSCI 551 Project Explanation Page
Emulated Distributed File System for exploration of Outbreaks L=
COVID 15, Ebola, and SARS

Explore our App Features enat bled by EDFS (Firebase and MySQL) by selecting one of the given options
Application Features

e
Firebase

s

at

Project Home Page Explanation Page

Page 12



By clicking on the Firebase or MySQL button on the Project Home page, the user can go

to one of the implementations.

@ Chome Fle Edt Viw Hstoy Bookmarks Profles Tab Hep © % voxme T 8 Monkov2s 643 @ Chome Fle Edt View Hstory Bookmarks Profies Tab Window H

Firebase File System MySQL File System
File Operations ? File Operations ?
File Explorer File Explorer
— [ o]
Firebase Operations Page MySQL Operations Page

e mkdir()
mkdir on the front-end is given by the ‘New Folder’ button and by clicking on it, an input
field appears where the path of the new directory to be created is specified. After that
by clicking on the ‘Create’ button, the directory is created. The button click internally
calls the Firebase (or MySQL) /mkdir REST API which takes ‘path’ as a parameter,
backend processes the request and the API response in JSON format is parsed and

rendered on the interface.

O o 1 O . = Vi s es2t § Chome e G Vew oy Bnwts Pl T Vs bep

* 400

4 O STt @ Newlib o Howohsale. @GS » | 2 Oberbrimis

Firebase File System =
File Operations ? File Operations ?
Eeterpmt File Explorer
File Expl
Ile Explorer T n
n “This directory is empty.
Mkdir directory path entry Directory created successfully

Page 13



o Is()

The Is command can be executed by checking in the File explorer section, by entering
the file system path for which the user wants to check the contents for. By clicking on the
search icon, the contents of the file are displayed in the section below. If the directory is
present, ‘This directory is empty’ message is displayed.

@ Chwome Fle Edt View Hstory Bookmaks Profies T Wndow Hep © % - s

& Chwome Fie Edt

206

2 oo}
File Explorer File Explorer
[ ] f—— (]
Empty Directory Directory contents displayed
o rm()

The rm command can be executed using the ‘Delete’ button in the Flle Explorer section
of the interface. The parameter the /rm APl accepts is the filepath. By clicking on the
Delete button, if the delete file operation is successful, the alert box is displayed. After
deleting the file, check if the file is deleted by using the Is command.

@ Chome Fle ESt Vew sty Bookmaks Profes Tab Window Heo

@ Cwome Fle Et Vew Hstoy Bookmas Profles Tab Window Hep

1270015432 says
o

(-]
Fi Operatons * File Operations ?
- oo
2 Juserfigardejdemo ChooseFile  covid.csv Upload
File Explorer
File Explorer
Juserfigarde/demo
Iserlgardldemo u - a
Wreport  Mtest
Wreport | Mtest  Dcovidesv
path Open | De
poes— ES - |
PLECOTRMY Meomumon Partition Partition Path
File deleted successfully Verifying by using Is command

Page 14



e put()
The put command can be used by the user by clicking on the ‘Upload’ button. The
number of partitions, file path, and selecting a file from the local system to post the

contents is performed by clicking on Upload. Once the upload is successful, alert
message is displayed.

& Chome Fle Edt Vew Hstoy Booknarks Profles Tb Window Heb

& Chrome Fle 6t Vew Hstoy Suoknats Pofies b Wadow Hep

RS 170015025818
o

Upload 2

2 Iuserigardefdemo ChooseFlle  covidcsy

File Explorer

0052 AMpng
1656 Mgng
11728 Mipng

2047M0 ﬂ Enterpah ouse wihls a
I
o2 U251 csv
24354 A arg
«

1402 A gog

Enter pathto use with s

Enterapathand cickon
5204 AMgg covidesy

5216 Aong ! ‘

28 Mpng Inkemaicn
N 1 Novnbo 25,2022t 35390

Enter a e path @ Photes oo (T Open | Delte Enterafie ath

Open | Delete

FILECONTENT  INFORMATION FILECONTENT  INFORMATION

Upload file from local Upload done successfully

& Chrome Fle Edt Vew Hstory Bookmarks Profies Tab Window Help

New Folder & Upload

2 Juser/igarde/demo

Choose File  covid.csv
File Explorer
luserfigarde/demo

Mreport | Mtest| | Dcovidsv |

Enter a file path

Open | Delete

FILE CONTENT  INFORMATION

Uploaded file checked using Is command

Page 15



e cat()
cat command can be executed by the user by clicking on the ‘Open’ button present. The
output of the cat command is displayed in the ‘FILE CONTENT’ ta

@ Chrome File Edit View History Bookmarks Profiles Tab Window Help

b below.

Other ockmarks

luserfigarde/der a

mreport | | mtest | | Dcovid.osv

Juserflgarde/demofcovid.csv m Detete |

FILECONTENT  INFORMATION

Deaths Recovered Deaths | 1week

Cumulative No. of New New New 100 100 100 Confirmed 1week %
Country  totalcases deaths Recovered Active cases deaths recovered Cases Cases  Recovered lastweek change increas:
Afghanistan 36263 1269 25198 9796 106 10 8 35 6949 504 3526 737 207
Albania 4880 a4 275 1991 176 63 295 5625 525 am 700 W7
Algeria 27973 163 18837 7973 616 8 749 216 6734 617 23691 4282 1807
Andorra 907 52 803 52 0 0 0 573 8853 648 884 2 26
Angola 950 0 222 667 B 1 o 232 2547 1694 749 201 2684
Antiguaand 86 3 3 18 4 4 5 349 7558 462 76 10 1316
Barbuda
Argentina 167416 3059 72575 91782 4890 120 2057 183 4335 a2 130774 36642 2802

cat command output

e getPartitionLocations() and readPartition()
The output for these two commands can be viewed by the user in the ‘Information’ tab.
To view the contents of a particular partition, enter the partition number and click on
the search icon. The contents of the partition would be displayed below in tabular

format.

& Chome Fle Edt Vew Hsoy Booknats Pofies Tb Wndow Hep © # wwmm 5 B Monhovas 7oA @ Cvome Flo Edt Vew Mooy Somads Pl T Wedow b

Juserfgardefdemojcovid.csv

Wreport | Mtest | Dcovidesv
FLECONTENT  INFORMATION
Juser/igarde/demojcovid.csv Open | Delete (D il
aoid) Storehsartgardefdemokond
i [— coid 2 ER—
Partition Partition Path
: =]
covid_1 Storefuserfigarde/demojcovid_1
covid_2 Storefuser/igarde/demojcovid_2
Desths Recovered Desths | Tk
Cumulative No. of New New  New 1100 100 100 Confirmed 1week %
o Country  totalcases deaths Recowred Acive cases deaths recowred Cases Cases  Recoversd lastwsek change incress
Kropsan WS 01 2u05 M0 483 2 8w 301 660 M 23 ey 28
s w o ® 1 o o o o w0 w1 s
i we w ws w0 o o W wm 2w e @ 2
Search
Finithe number of . v Search
i the number o deaths pr county -

getPartitionLocation() output readPartition() output

The search and analysis interface implementation details are present in section C. Both
MySQL and Firebase pages have ‘?’ symbols on top for users to access the Explanation

Page.

Page 16



B.4 Project Integration APIs

BASE_URL= http://127.0.0.1:5432/

Function Endpoint Met | Query Sample Request URL Sample JSON
hod | Paramete Responses
r
MySQL mkdir | /mysql/mkdir GET path BASE_URL + {"Stat“:";l"ﬁjfe“°’v created
mysql/mkdir?path=/demo ezl
Firebase mkdir | /firebase/mkdir BASE_URL +
firebase/mkdir?path=/demo
MysQL Is /mysql/ls GET path BASE_URL + { “directories™: [],
l/ls? th'/ id "files":["covid_19_clean_comp
mysql/Is?path=/covi lete.csv" |}
Firebase Is /[firebase/Is BASE_URL +
firebase/ls?path=/covid
MySQL cat /mysql/cat BASE_URL + [ ve \"\"Australial "
GET file mysq|l/cat?file=/user/test/sars.c Ctmu‘:::;:;yméle ustralia\’
SV cases\":4,\"Cumulative female
cases\":2,\"Cumulative total
cases\":6,\"No. of
deaths\":0,\"Case fatalities
ratio (%)\":0,\"Date onset first
Firebase cat /firebase/cat BASE_URL + Pr°ba"'{"$lz 26\ /200317 \"
firebase/cat?file=/user/test/sars c:;:;a\n a;}e/\"n\.r\,./o,\"A;é\ A
.CSV range\":\"Jan-45\",\"Number
of Imported cases\":6.0}"
1
MySQL rm /mysql/rm BASE_URL + etatuc "OK"
GET file mysql/rm?file=/user/test/sars.c Ustatus™ }
sV
Firebase rm /[firebase/rm BASE_URL +
firebase/rm?file=/user/test/sars
.CSV
MysQL put /mysql/put POST | file, dirPath, | BASE_URL + . oK
numPart mysql/put?dirPath=/user/test& Fstatus® }
numPart=2
Body: file: sars.csv
Firebase put /firebase/put BASE_URL +

firebase/put?dirPath=/user/test
&numpPart=2

Page 17




Body: file: sars.csv
MySQL /mysql/getPartition BASE_URL +
getPartitionLo | Locations GET file mysql/getPartitionLocations?file {"ebola_l":
cations =/user/test/ebola.csv "Store/user/test/ebola_1",
"ebola_2":
Firebase /firebase/getPartiti BASE_URL + ;Stm/ user/test/ebola_2"
getPartitionLo | onLocations firebase/getPartitionLocations?f
cations ile=/user/test/ebola.csv
MySQL /mysql/readPartitio BASE_URL +
readPartition | n GET file, mysql/readPartition?file=/user/ ’[’{\"Country\":\"Italy " \"Date
partNumber | test/ebola.csv&partNumber=2 \":\"6\\/22\\/2015\",\"Cumul
ative total cases\":1.0,\"No. of
Firebase /firebase/readParti BASE_URL + deaths\":0}" ]
readPartition | tion firebase/readPartition?file=/use
r/test/ebola.csv&partNumber=2
MySQL search | /mysql/countrydea BASE_URL + {'mapper™: ["{}",
function 1 thcount GET dataset, mysql/countrydeathcount?data }{\\f,j“c’,':’y\ AVOV:india
country set=covid&country=India deaths\":{\"0\":33408},\"Cum
ulative total
Firebase /firebase/countryd BASE_URL + c?}ses\{}{]\ ".?r};ti:ggm}"'
search eathcount firebase/countrydeathcount?da | "{\"Country\":{\"0\":\"India\"
function 1 taset=covid&country=India }h\"No. of
deaths\":{\"0\":33408},\"Cum
ulative total
cases\":{\"0\":1480073}}"}
MySQL search | /mysqgl/findcountri GET dataset, BASE_URL + Outputs too large.
function 2 esbetween limitl, mysgql/findcountriesbetween?d
limit2 ataset=covid&Iimit1=1000&limi
t2=5000
Firebase /firebase/findcount BASE_URL +
search riesbetween firebase/findcountriesbetween?
function 2 dataset=covid&Ilimit1=1000&Ilim
it2=5000
MysQL /mysql/analysisdea GET - BASE_URL + Outputs too large.
analysis thpercountry /mysql/analysisdeathpercountry
functions
/mysql/analysisrec BASE_URL +
overy mysql/analysisrecovery
Firebase /firebase/analysisd BASE_URL +
analysis eathpercountry firebase/analysisdeathpercount
functions ry
/firebase/analysisr BASE_URL +
ecovery firebase/analysisrecovery

Page 18




C. Search and Analytics Functions
Search Functions:
1. Death count for a specific disease (of 3) for a specific country.
2. Find countries with a death count between two numbers for a specific
disease.
Analytics Functions:
1. Analyze the count of deaths per country for each disease
2. Analyze the number of people who recovered after being affected by the
disease for each disease.

C1. MySQL Implementation

For the MySQL implementation for partition-based map and reduce on data stored in
our EFDS, we performed our following search and analytic functions on our dataset
partitions and combined the results.

SELECT
QUERY ON
partition X

SELECT file PEL=C] SELECT COMBINE
partition IDS

from directory — QUERY ON RESULTS

from partitions i
MySQL table MySQL table partition Y

SELECT
QUERY ON
partition Z

Above is my flow of how | coded the search and analytic functions for MySQL. As you
can see, | go through all the tables in my database to get to my final answer.

Search Functions:
1. parameters(disease, country)

Page 19



For example, if a user puts in the country “Canada” and the disease “sars” then
we can look through the sars partition ids, query all the death counts from canada
and combine them easily in python.

: search_deathsByCountryAndDataset("Canada", "sars")

Getting partition ids for 'sars_2003_complete_dataset_clean.csv'...

(6,)
(7,)
(8/)
(9,)
(10,)

mapper:

country deaths

0 Canada 346
0 Canada 363
0 Canada 345
0 Canada 456
0 Canada 503
reducer:

country deaths
0 Canada 2013

Total Deaths for Canada: 2013

You can see in the example above, there are 5 partitions and 5 death counts
mapped and reduced to a total death count.

parameters(disease, upper/lower thresholds)

Following the same workflow, you can see that there is only 1 partition for covid,
and for all the sums of deaths per country, it gets filtered between the upper and
lower limits decided by the user. The example here uses covid with limits of 2000
and 5000.

: countries_casesBetweenXY("covid", 2000, 5000)

Getting partition ids for 'covid/covid_19_clean_complete.csv'...

(1,)

country cases
0 Afghanistan 1936390.0
1 Algeria 1179755.0
2 Andorra 94404.0
3 Angola 22662.0
4 Antigua and Barbuda 4487.0
182 Yemen 67180.0
183 Comoros 15823.0
184 Tajikistan 383026.0
185 Lesotho 6794.0
186 Albania 196702.0

[187 rows x 2 columns]

Countries with cases between 2000 and 5000

2000

country cases
5 Antigua and Barbuda 4487.0
17 Belize 2636.0
19 Bhutan 4971.0
49 Dominica 2059.0
59 Fiji 2266.0
63 Gambia 4845.0
69 Grenada 2466.0
94 Laos 2229.0
141 Saint Lucia 2236.0
142 Saint Vincent and the Grenadines 2771.0
148 Seychelles 3977.0
168 Timor-Leste 2487.0

Page 20



Analytics Functions:

1. In order to find the total deaths per country across all datasets, we found the
total deaths per country for each dataset, and combined all three results of each
dataset. Here is an example of a SQL query we used...

"SELECT CountryRegion, SUM(Deaths)
FROM partition
GROUP BY CountryRegion"

2. In order to find the average number of people recovered from all datasets, we

query all partitions in such a way...

"SELECT AVG(Confirmed), AVG(Recovered)

FROM partition”

We used the average number of confirmed cases as a way to analyze the data. We
take all the averages and combine them to make a total average across all
datasets to get an output like this:

averageNumberofRecoveredPerOutbreak()

{'mapper': {'sars': [[175, 275], [107, 154], [142, 264], [100, 177], [154, 238]], 'ebola': [[299, 2863], [205, 2863],
[184, 2861], [171, 2863]], 'covid': [[7915, 16885]]}, 'reducer': {'sars': [136, 222], 'ebola': [215, 2863], 'covid':
[7915, 16885]1}}

C2. Firebase Implementation

The general implementation involves creating a mapper and a reducer function for each
specific search and analysis function.

The workflow needs to emulate a hadoop implementation and as such needs to run

mappers asynchronously. For this | opted for the multiprocessing library of python and
its associated thread pools to run multiple jobs asynchronously for different partitions.

Page 21



FINAL QUTPUT
'

REDUCER Python implementation for
reducer after all mappers
finished runs

/,y S

- \\ T
S / \ N
MAPPER 1 MAPPER 2 MAPPER 3 MAPPER 4 Python Multi
Library for async parallel run:
[} [y

STORED IN
FIREBASE

STORED IN
FIREBASE

‘ Partition 1 ‘ ‘ Partition 2 ‘ ‘ Pariition 3 ‘ ‘ Pariition 4 ‘

The general solution is represented in the flowchart above. The sample workflow for the
specific queries is described below.
1. Death counts for specific diseases for a specified country:
a. First we ask the user to select a Dataset for which they want to search the
death count.
b. Next we ask the user to enter the name of a country to look for deaths for
that specific country.
c. The following steps are taken to search for the result:
i.  We run parallel processes for mapping (1 for each partition the file
is divided into) which does a select filter over the partitioned data
to find the country mentioned in the search input.

mapperQl(file, country):

df = read_data_for_querying(file)

res = df[df['Country’'].str.lower() == country.lower()][['Country', 'No. of deaths'

return res

Page 22



ii. After this the results of all the mappers are collected in a list and
sent as input to the reducer, which then further searches for the
results in the mapper results.

2. Find countries with a death count between two numbers for a specific disease.
a. For this search query the user enters lower and upper limits for death
count for a specific dataset.
b. The mapper then runs through all the partitions searching for countries
that match the condition. The result for the mappers is then collected by
the reducer and returned to the API call.

3. Analyze the count of deaths per country for each disease
a. The analysis questions are posed to repeat the action for all 3 disease
datasets - Sars, Covid, and Ebola.
b. First the mapper runs through the partitions and collects the number of
deaths in the current partition for each country.
c. Then the reducer sums over the mapper results to produce the total
number of deaths per country for the dataset.

4. Analyze the number of people who recovered after being affected by the disease
for each disease.

a. The analysis questions are posed to repeat the action for all 3 disease
datasets - Sars, Covid, and Ebola.

b. First the mapper runs through the partitions and finds the number of
people who survived the disease.

c. Then we collect the total number of countries present in our partition, we
return these three values to our mapper to combine and return the
average number of people who recovered from the specific disease.

d. Then the reducer sums over the mapper results to produce the total
number of people recovered for the diseases, it then sums over the total
country count to calculate and return the average number of people who

{"mapper": {"sars": [[7693.0, 6964.0]1, [33.0, 31.0]1, [259.0, 224.0], [111.0, 1603.0]1]1, "ebola": [[1387413.0, 831470.0],
[1737814.0, 1021368.0], [1603719.6, 954201.0], [1596516.08, 963003.01]1, "covid": [[4167167.0, 4022094.0], [3364889.0,
3209857.0], [1874660.0, 1784999.0], [7073769.0, 6809499.0]11%, "reducer": {"sars": [252.48275862068965, 8096.0], "ebola":
[1522.0193782801775, 6325462.0]1, "covid": [84633.41711229946, 16480485.0]

Page 23



recovered from the disease.

C3. Application User Interface Implementation

1. Search Functions:

The search functions are present in the Search section of the user interface. The two
functions described above in Section C1 and Section C2 are displayed using the
accordion HTML component. The output of the search function is displayed in the
‘RESULT’ section.

Deaths Recovered Deaths | 1week
Cumulative No. of New New New /100 1100 100 Confirmed 1week %
Country  total cases deaths  Recoveres d Active  cases deaths  rec overed Cases Cases  Recovel red lastweek  char nge increas.

Kyrgyzstan 33296 1801 21205 10790 483 24 817 391 6369 614 27143 6153 2267

20 0 19 1 o o o o % o 19 i 526

Search

Find the number of deaths per country v

RESULT

Search Section

e Finding Death counts for specific disease for a user specified country
The user can select the country and disease for checking the death counts of that

country. By clicking on the ‘Submit’ button the user can see the number of deaths for
that country.

Page 24



Search

Total Deaths in INDIA - Cumuiatve: 1480073

Find countres forthe number of cases selected M

Analysis

RESULT

Search death count of the country

e Finding countries with a death count between two numbers for a specific
disease.

This function takes in three parameters, disease, limitl and limit2. By clicking on
the ‘Submit’ button, the countries that have the number of disease cases
between limitl and limit2 are displayed.

Profies Tab Window Help

Country No. of Deaths.

aaaaaaaaaa

Analysis

RESULT

Total Deaths per Country

Search countries in the user specified range

2. Analysis Functions:

The analysis functions are present in the Analysis section of the user interface. The two
functions described for analysis in Sections C1 and C2 are displayed using block buttons.
The output of the analysis functions is displayed in the ‘RESULT’ section.

Page 25



RESULT

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Analysis

RESULT

Total Deaths per Country

Analysis Section

® Analysis of the death count per country for each disease

To view the analysis of death count per country, the user can click on the ‘Total Deaths

per Country’ button. The result of the analysis (as explained in Sections C1 and C2) is
displayed in the ‘RESULT’ section.

om

AAAAAA

nnnnnnnn

Bangladesh 2965

Analysis

RESULT

Total Deaths per Country. SARS

389

Number of Deaths per Country output

e Analysis on the number of people who recovered after being affected by the
disease

The user can click on the ‘Average Number of Recovered Cases’ button to view the
analysis of the number of people who recovered after being affected by the disease. The
result of the analysis is displayed in the ‘RESULT’ section of the interface.

Page 26



D. Project Tracker:

RESULT

Analysis

RESULT

Total Deaths per Country nouuer

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

aaaaaaaaaaaaaaaaaaa

Number of recovered cases

Date Task Responsibilities Status
Description
9/19 Proposal Group Meeting on zoom to write out proposal DONE
9/19 - Research Tushar: Individual research on Firebase DONE
10/3 Laxmi: Individual research on web apps
Raajitha: Individual research on MYSQL
** Research will include: storing datasets, how we want to
use commands, functions to use, user-flow, interface
languages, database formatting, contents display, and
storing®**
10/3 - Task-1 Tushar: implement commands from task one on firebase DONE
10/17 Implementati Laxmi: set up web browser app and create
on structures/interface for potential user
Raajitha: implement commands from task one on MYSQL
**Actually start coding and setting up the commands with
their executions. We can use this time to communicate
with each other, ask questions and make changes**
10/17- Task 1 Tushar: Complete firebase implementation DONE
10/31 Completion, Laxmi: Start connecting interface with databases
Task 2 Raajitha: Complete MYSQL implementation
Implementati ** will start to add updates to report **

Page 27




on, Midterm

Report
10/31 Midterm Group meeting to finalize and submit midterm report DONE
Report
10/31 - Task 2 Work on PMR operations together DONE
11/14 Completion,
Task 3
Implementati
on
11/14 - Complete Tushar: Test and finalize task 2 DONE
11/28 Task 3 & Laxmi: Test and finalize task 3 & Integration
Integration. Raajitha: Test and finalize task 2
Final Report
11/28 Final Report Group meeting to finalize report and presentation video DONE
11/28 - | Work on Peer ** individually work on peer evaluations ** -
12/1 Evaluations
12/2 Peer Submit evaluations -
Evaluations

E. Changes to previous project work

1. MysQL:
we changed the put() function to allow lots of data to be loaded fast. | was

manually inserting the lines before, but now we just use the “LOAD LOCAL INFILE”

to load the csv file extremely quickly because before that, the long datasets were

not loading at all.

2. Firebase:

- One of the major changes needed was to introduce children and content in

the directory system. This was needed to handle multiple subdirectories

and files easily in the EDFS. We further split the location of partitions and

Page 28




the actual partitions themselves into separate cards. This prevents errors
due to path matches and gives a clean and extendable implementation.

- As expected implementation of map reduce emulation required the help of
the multiprocessing library in python which essentially allowed the
mappers to run in parallel and emulate the working of a distributed file
system.

3. Application User Interface

The Tree view presented and statically generated during the Midterm is changed on the
user interface due to challenges faced during dynamic updates and integration to update
and render the Treeview file system successfully. The new approach provides users with
intuitive

F. Challenges, Learnings & Future Work:

1. MysQL:

- AWS RDS Instance connection: This took a lot of time for me to figure out in
terms of connecting it to python and forming a proper database using python and
MySQL because | do not have windows. | learned a lot with how AWS works and
how | can build projects in the future.

- Loading CSV File: | had to dabble a lot with the MySQL permissions in order to
allow a whole csv file to be loaded into a table. | learned a lot about how you can
bulk load csv files easily into MySQL tables instead of inserting each line.

- Search & Analytics: These functions were hard to do because some datasets had
different data like cumulative columns versus regular columns. | had to do
different functions for different datasets. This helped me learn a lot about
aggregate functions and how to query on python and MySQL as well as concat
multiple tables.

2. Firebase:
- One of the biggest challenges was to get the directory substructure right.
- Next big challenge was to get all the urls of the firebase system right to
ensure the 3 big cards (Dir,Files and Store) are handled correctly

Page 29



- Thinking about the edge cases for put() function was especially
challenging, and it resulted in a big multi-step function.

- The analytics were challenging to process due to the nature of distributed
data and cumulative functions, some stats like averages also required me
to collect the count of inputs distributed over the dataset partitions.
Creating a standardized structure for these distributed requests was a
great learning experience.

3. Application User Interface:

- The initial design of the user interface of considering the EDFS commands and
putting it into an intuitive user interface for the users was a bit challenging.

- As we were new to the Flask web framework and related development, it was a
new learning curve for us as a team. We all are relatively new to front-end
technologies, and building user interfaces, the initial development phase was a
bit challenging for us.

- Javascript, JQuery implementations, handling Axios and rendering the correct
response on the front-end, integration and testing were challenging.

- Future work is to host this application on a web application server i.e. on
platforms like Heroku, PythonAnywhere, GCP. Improving the performance of the
interface, new errors/exception handling, and making the application more
intuitive and user friendly.

The project work had a good learning curve, and gave us an opportunity to work
together as a team.

G. Useful Links and Resources

Demo Video Link:
https://www.youtube.com/watch?v=bPm5M0QuKhg&feature=youtu.be

Project Code Google Drive Link:
https://drive.google.com/drive/u/0/folders/1M1kANNc5BgycbigY GKEgcThQ6RSp-z5

Page 30


https://www.youtube.com/watch?v=bPm5M0QuKhg&feature=youtu.be
https://drive.google.com/drive/u/0/folders/1M1kANNc5BqycbigY_GKEqcThQ6RSp-z5

GitHub Code Link:
https://github.com/laxmigarde/dsci551-project

https:

ithub.com/laxmigarde/dsci551-project/tree/integration-frontend

Resources and materials referred:

N

0 N Uk~ Ww

Flask Documentation: https://flask.palletsprojects.com/en/2.2.x/

Bootstrap
Documentation:https://getbootstrap.com/docs/5.0/getting-started/introduction/

JQuery: https://www.w3schools.com/jquery/default.asp

Axios: https://axios-http.com/docs/intro

Javascript MDN: https://developer.mozilla.org/en-US/docs/Web/JavaScript

Font Awesome: https://fontawesome.com/

MySQL APIs: https://webdamn.com/create-restful-api-using-python-mysql/

Python web application using Flask:

https://www.digitalocean.com/community/tutorials/how-to-create-your-first-we

b-application-using-flask-and-python-3

Page 31


https://github.com/laxmigarde/dsci551-project
https://github.com/laxmigarde/dsci551-project/tree/integration-frontend
https://flask.palletsprojects.com/en/2.2.x/
https://getbootstrap.com/docs/5.0/getting-started/introduction/
https://www.w3schools.com/jquery/default.asp
https://axios-http.com/docs/intro
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://fontawesome.com/
https://webdamn.com/create-restful-api-using-python-mysql/
https://www.digitalocean.com/community/tutorials/how-to-create-your-first-web-application-using-flask-and-python-3
https://www.digitalocean.com/community/tutorials/how-to-create-your-first-web-application-using-flask-and-python-3

